

High-Performance Adaptive MPI Derived Datatype Communication for Modern Multi-GPU Systems

Ching-Hsiang Chu, Jahanzeb Maqbool Hashmi, Kawthar Shafie Khorassani, Hari Subramoni, **Dhabaleswar K. (DK) Panda**

The Ohio State University

{chu.368, hashmi.29, shafiekhorassani.1}@osu.edu, {subramon, panda}@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

- Introduction
- Problem Statement
- Proposed Designs
- Performance Evaluation
- Concluding Remarks

Drivers of Modern HPC Cluster Architectures

Multi-core Processors

High Performance Interconnects -InfiniBand <1usec latency, 200Gbps Bandwidth>

Accelerators / Coprocessors high compute density, high performance/watt >1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Multiple Accelerators (NVIDIA GPGPUs and Intel Xeon Phi) connected by PCIe/NVLink interconnects
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

MVAPICH

Sierra

Sunway TaihuLight

K - Computer

Non-contiguous Data Transfer for HPC Applications

- Wide usages of MPI derived datatype for Non-contiguous Data Transfer
 - Requires Low-latency and high overlap processing

Quantum Chromodynamics Weather Simulation: COSMO model GPU4 GPU5 GPU4 GPU5 GPU4 GPU5 GPU4 GPU5 GPU3 2D domain decomposition M. Martinasso, G. Kwasniewski, S. R. Alam, Thomas C. Schulthess, and T. Hoefler. "A PCIe congestion-aware performance"

model for densely populated accelerator servers. "SC 2016

Mike Clark. "GPU Computing with QUDA, "Developer Technology Group, https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Clark_M_LQCD.pdf

State-of-the-art MPI Derived Datatype Processing

- GPU kernel-based packing/unpacking [1-3]
 - High-throughput memory access
 - Leverage GPUDirect RDMA capability

[1] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang and D. K. Panda, "HAND: A Hybrid Approach to Accelerate Non-contiguous Data Movement Using MPI Datatypes on GPU Clusters," ICPP 2014.

[2] C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee, H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS 2016.

[3] Wei Wu, George Bosilca, Rolf vandeVaart, Sylvain Jeaugey, and Jack Dongarra. "GPU-Aware Non-contiguous Data Movement In Open MPI," HPDC 2016.

Expensive Packing/Unpacking Operations in GPU-Aware MPI

- Significant overhead when moving noncontiguous GPUresident data
 - Wasting cycles
 - Extra data copies
 - High Latency!!!

Application Kernels and their sizes

Data transfer between two NVIDIA K80 GPUs with PCIe link

Analysis of Packing/Unpacking Operations in GPU-Aware MPI

- Primary overhead
 - Packing/Unpacking
 - CPU-GPU synchronization
 - GPU driver overhead
- Can we reduce or
 eliminate the expensive packing/unpacking
 operations?

Data transfer between two NVIDIA K80 GPUs with PCIe link

- Introduction
- Problem Statement
- Proposed Designs
- Performance Evaluation
- Concluding Remarks

Problem Statement

- How can we exploit load-store based remote memory access model over highperformance interconnects like PCIe and NVLink to achieve "packing-free" noncontiguous data transfers for GPU-resident data?
- Can we propose new designs that mitigate the overheads of existing approaches and offer optimal performance for GPU based derived datatype transfers when packing/unpacking approaches are inevitable?
- How to design an adaptive MPI communication runtime that can dynamically employ optimal DDT processing mechanisms for diverse application scenarios?

- Introduction
- Problem Statement
- Proposed Designs
 - Zero-copy non-contiguous data movement over NVLink/PCIe
 - One-shot packing/unpacking
 - Adaptive MPI derived datatype processing
- Performance Evaluation
- Concluding Remarks

Overview of Zero-copy Datatype Transfer

- Direct link such as
 PCIe/NVLink is available
 between two GPUs
- Efficient datatype layout exchange and cache
- Load-store data movement

Zero-copy Datatype Transfer: Enhanced Layout Cache

- Convert IOV list to displacement list
 - Improved reusability
 - One-time effort
- Cache datatype layout on the shared system memory
 - Accessible within the node without extra copies

Zero-copy Datatype Transfer: Copy vs. Load-Store

- Exploiting load-store capability of modern interconnects
 - Eliminate extra data copies and expensive packing/unpacking processing

Existing Packing Schem

Proposed Packing-free Schem

One-shot Packing/Unpacking Mechanism

- Packing/unpacking is inevitable if there is no direct link
- Direct packing/unpacking between CPU and GPU memory to avoid extra copies

- 1. GDRCopy-based
 - CPU-driven low-latency copy-based scheme
- 2. Kernel-based
 - GPU-driven high-throughput loadstore-based scheme

Adaptive Selection

- Availability of GPUDirect peer access and GPUDirect RDMA
- Latency- or throughput-oriented communication pattern

- Introduction
- Problem Statement
- Proposed Designs
- Performance Evaluation
- Concluding Remarks

Experimental Environments

	Cray CS-Storm	NVIDIA DGX-2
CPU Model	Intel Haswell	Intel Skylake
System memory	256 GB	1.5 TB
GPUs	8 NVIDIA Tesla K80	16 NVIDIA Tesla V100
Interconnects	PCIe Gen3 Mellanox IB FDR	NVLink/NVSwitch Mellanox IB EDR x 8 (Unused)
OS & compiler version	RHEL 7.3 & GCC 4.8.5	Ubuntu 18.04 & GCC 7.3.0
NVIDIA driver & CUDA versions	410.79 & 9.2.148	410.48 & 9.2.148

- Benchmarks: Modified DDTBench to use GPU-resident data
 - NAS_MG, MILC, Specfem3D_cm, and Specfem3D_oc
- Application kernels
 - COSMO model & Jacobi Method
- Baseline: MVAPICH2-GDR 2.3.1

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 3,050 organizations in 89 countries
 - More than 615,000 (> 0.6 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Jun '19 ranking)
 - 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center i
 - 5th, 448, 448 cores (Frontera) at TACC
 - 8th, 391,680 cores (ABCI) in Japan
 - 15th, 570,020 cores (Neurion) in South Korea and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - http://mvapich.cse.ohio-state.edu
 Partner in the TACC Frontera System
- Empowering Top500 systems for over a decade

Evaluation of Zero-copy Design: Dense Layout

Zero-copy performs the best in almost all cases!

Please refer to the paper for more performance comparison!

Evaluation of Zero-copy Design: Sparse Layout

 Zero-copy performs the best in all cases by avoiding unnecessary data copies and CPU-GPU synchronization

Evaluation of One-shot Packing Design

- Platform: Cray CS-Storm; Two GPUs on different sockets without direct link
- GDRCopy-based scheme performs better for dense layout
- Kernel-based scheme performs better for sparse layout

Please refer to the paper for more performance comparison!

Evaluation of Applications

COSMO Model

(https://github.com/cosunae/HaloExchangeBenchmarks)

Jacobi (2DStencil Computation)

Platform: Cray CS-Storm, 8 NVIDIA K80 GPUs per node

Platform: NVIDIA DGX-2, 16 NVIDIA V100 GPUs per node

- Introduction
- Problem Statement
- Proposed Designs
- Performance Evaluation
- Concluding Remarks

Concluding Remarks

- Non-contiguous data communication is common in many HPC applications
 - however, it is not optimized in current GPU-Aware MPI implementations
- Proposed designs significantly reduce the packing overhead
 - Zero-copy design eliminates expensive packing/unpacking operations
 - One-shot design avoids extra data copies
 - Adaptive scheme dynamically selects the optimal communication paths
- Publicly available since MVAPICH2-GDR 2.3.2 release
 - http://mvapich.cse.ohio-state.edu/

Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/