
Designing	High	Performance	
Heterogeneous	Broadcast	for	Streaming	

Applications	on	GPU	Clusters	
1Ching-Hsiang	Chu,	1Khaled	Hamidouche,	1Hari	Subramoni,	

1Akshay	Venkatesh,	2Bracy	Elton	and	1Dhabaleswar	K.	(DK)	Panda	

1Department	of	Computer	Science	and	Engineering,	The	Ohio	State	University
2Engility	Corporation

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2016-5574



SBAC-PAD	2016 2Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation

• Conclusion	and	Future	Work

Outline



SBAC-PAD	2016 3Network	Based	Computing	Laboratory

• Multi-core	processors	are	ubiquitous
• InfiniBand	is	very	popular	in	HPC	clusters
• Accelerators/Coprocessors	are	becoming	common	in	high-end	systems
➠ Pushing	the	envelope	towards	Exascale	computing

Drivers	of	Modern	HPC	Cluster	Architectures

Accelerators	/	Coprocessors	
high	compute	density,	high	performance/watt

>1	Tflop/s	DP	on	a	chip	

High	Performance	Interconnects	– InfiniBand
<1	µs	latency,	>100	Gbps	Bandwidth		

Tianhe	– 2 Titan Stampede Tianhe	– 1A

Multi-core	Processors



SBAC-PAD	2016 4Network	Based	Computing	Laboratory

• Growth	of	IB	and	GPU	clusters	in	the	last	3	years		
– IB	is	the	major	commodity	network	adapter	used

– NVIDIA	GPUs	boost	18%	of	the	top	50 of	the	”Top	500”	systems	as	of	June	2016

IB	and	GPU	in	HPC	Systems

8.4 7.8 9 9.8 10.4 13.8 13.2

41 41.4 44.4 44.8
51.8 47.4

40.8

0
10
20
30
40
50
60

June-13 Nov-13 June-14 Nov-14 June-15 Nov-15 June-16 Sy
st
em

	sh
ar
e	
in
	To

p	
50
0	
(%

)

GPU	Cluster InfiniBand	Cluster Data	from	Top500	list		(http://www.top500.org)



SBAC-PAD	2016 5Network	Based	Computing	Laboratory

• Streaming	applications	
on	HPC	systems
1. Communication	(MPI)

• Broadcast-type	operations

2. Computation	(CUDA)
• Multiple	GPU	nodes	as	workers

– Examples
• Deep	learning	frameworks

• Proton	computed	tomography	
(pCT)

Motivation
Data	Source

SenderHPC	resources	for	
real-time	analytics

Real-time	streaming

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Data	streaming-like	broadcast	operations



SBAC-PAD	2016 6Network	Based	Computing	Laboratory

• Streaming	applications	on	HPC	systems
1. Communication	— Heterogeneous	Broadcast-type	operations

• Data	are	usually	from	a	live	source	and	stored	in	Host	memory

• Data	need	to	be	sent	to	remote	GPU	memories	for	computing

Motivation	

Sender

Real-time	streaming

Data	streaming-like	broadcast	operations

Requires	data	movement	from	Host	
memory	to	remote	GPU	memories,	
i.e.,	host-device	(H-D)	heterogeneous	
broadcast	
⇒ Performance	bottleneck



SBAC-PAD	2016 7Network	Based	Computing	Laboratory

• Requirements	for	streaming	applications	on	HPC	systems
– Low	latency,	high	throughput	and	scalability

– Free	up	Peripheral	Component	Interconnect	Express	(PCIe)	
bandwidth	for	application	needs

Motivation

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Worker
CPU
GPU

GPU

Data	streaming-like	broadcast	operations



SBAC-PAD	2016 8Network	Based	Computing	Laboratory

• NVIDIA	GPUDirect[1]

– Use	remote	direct	memory	
access	(RDMA)	transfers	
between	GPUs	and	other	
PCIe	devices	⇒ GDR

– Peer-to-peer	transfers	
between	GPUs	

– and	more…

• InfiniBand	(IB)	hardware	
multicast	(IB	MCAST)[2]

– Enables	efficient	designs	of	
homogeneous	broadcast	
operations

• Host-to-Host[3]

• GPU-to-GPU[4]

Motivation	– Technologies	we	have

[1]	https://developer.nvidia.com/gpudirect
[2]	Pfister	GF.,	“An	Introduction	to	the	InfiniBand	Architecture.	”	High	Performance	Mass	Storage	and	Parallel	I/O,	Chapter	42,	pp	617-632,	Jun	2001.
[3]	J.	Liu,	A.	R.	Mamidala,	and	D.	K.	Panda,	“Fast	and	Scalable	MPI-level	Broadcast	using	InfiniBand’s	Hardware	Multicast	Support,”	in	IPDPS	2004,	p.	10,	April	2004.
[4]	A.	Venkatesh,	H.	Subramoni,	K.	Hamidouche,	and	D.	K.	Panda,	“A	High	Performance	Broadcast	Design	with	Hardware	Multicast	and	GPUDirect	RDMA	for	Streaming	
Applications	on	InfiniBand	Clusters,”	in	HiPC 2014,	Dec	2014.	



SBAC-PAD	2016 9Network	Based	Computing	Laboratory

• Can	we	design	a	high-performance	heterogeneous	broadcast
for	streaming	applications?
• Supports Host-to-Device broadcast operations

• Can	we	also	design	an	efficient	broadcast	for	multi-GPU	
systems?
• Can	we	combine	GPUDirect	and	IB	technologies	to
• Avoid	extra	data	movements	to	achieve	better	performance	
• Increase	available	Host-Device	(H-D)	PCIe bandwidth	for	
application	use	

Problem	Statement



SBAC-PAD	2016 10Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs
– Heterogeneous	Broadcast	with	GPUDirect RDMA	(GDR)	and	

InfiniBand	(IB)	Hardware	Multicast

– Intra-node	Topology-Aware	Broadcast	for	Multi-GPU	
Systems

• Performance	Evaluation

• Conclusion	and	Future	Work

Outline



SBAC-PAD	2016 11Network	Based	Computing	Laboratory

• Key	requirement	of	IB	MCAST
– Control	header	needs	to	be	stored	in	host	memory

• SL-based	approach:	Combine	CUDA	GDR	and	IB	MCAST	features
– Also,	take	advantage	of	IB	Scatter-Gather	List	(SGL)	feature:

• Multicast	two	separate	addresses	(control	on	the	host	+	data	on	GPU)—in	but	
one IB	message	

– Directly	IB	read/write	from/to	GPU	using	GDR	feature	⇒ low-latency	zero-
copy	based	schemes		

– Avoiding	extra	copy	between	Host	and	GPU	⇒ frees	up	PCIe bandwidth	
resource	for	application	needs

– Employing	IB	MCAST	feature	increases	scalability	

Proposed	Heterogeneous	Broadcast



SBAC-PAD	2016 12Network	Based	Computing	Laboratory

• Overview	of	SL-based	approach

Proposed	Heterogeneous	Broadcast

Node	N

IB	HCA

IB	HCA

CPU

GPU

Source

IB	
Switch

GPU

CPU

Node	1

Multicast	steps

C
Data

C

IB	SL	step

Data

IB	HCA
GPU

CPU

Data

C



SBAC-PAD	2016 13Network	Based	Computing	Laboratory

Broadcast	on	Multi-GPU	systems

IB	
SwitchGPU

CPU
Source

GPU

CPU

GPU	0

CPU
Node	N

GPU	1 GPU	N

Multicast	steps
cudaMemcpy
(Host	↔	Device)

Node	1

• Existing	two-level	approach
– Inter-node:	Can	apply	proposed	SL-based	

– Intra-node:	Use	host-based	shared	memory

Issues	of	H-D	cudaMemcpy	:
1. Expensive
2. Consumes	PCIe bandwidth	
between	CPU	and	GPUs!



SBAC-PAD	2016 14Network	Based	Computing	Laboratory

• Proposed	Intra-node	Topology-Aware	Broadcast
– CUDA	InterProcess	Communication	(IPC)	

Broadcast	on	Multi-GPU	systems

Node	1

IB	
Switch

GPU	0 GPU	1 GPU	N

Node	NGPU

CPU

Source

GPU

CPU

CPUMulticast	steps

cudaMemcpy
(Device	↔	Device)



SBAC-PAD	2016 15Network	Based	Computing	Laboratory

• Proposed	Intra-node	Topology-Aware	Broadcast	
– Leader	keeps	a	copy	of	the	data

– Synchronization	between	GPUs
• Use	a	one-byte	flag	in	shared	memory	on	host

– Non-leaders	copy	the	data	using	CUDA	IPC

Ø Frees	up	PCIe bandwidth	resource

• Other	Topology-Aware	designs
– Ring,	K-nomial…etc.

– Dynamic	tuning	selection

Broadcast	on	Multi-GPU	systems

GPU	0

Shared	Memory	
Region

RecvBuf

CopyBuf

GPU	1

RecvBuf

GPU	N

RecvBuf

Host	Memory

IPC



SBAC-PAD	2016 16Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation
– OSU	Micro-Benchmark	(OMB)	level	evaluation

– Streaming	benchmark	level	evaluation

• Conclusion	and	Future	Work

Outline



SBAC-PAD	2016 17Network	Based	Computing	Laboratory

1. Wilkes	cluster@	University	of	
Cambridge
http://www.hpc.cam.ac.uk/services/wilkes

– 2	NVIDIA	K20c	GPUs	per	node

– Used	Up	to	32	GPU	nodes

2. CSCS cluster	@	Swiss	National	
Supercomputing	Centre	
http://www.cscs.ch/computers/kesch_escha/index.html

– Cray	CS-Storm	system

– 8	NVIDIA	K80	GPU	cards	per	node	(	=	16	
NVIDIA	Kepler	GK210	GPU	chips	per	node)

– Used	Up	to	88	NVIDIA	K80	GPU	cards	
(176	GPU	chips)	over	11	nodes

• Modified	Ohio	State	University	
(OSU)	Micro-Benchmark	(OMB)
– http://mvapich.cse.ohio-state.edu/benchmarks/

– osu_bcast - MPI_Bcast Latency	Test

– Modified	to	support	heterogeneous	
broadcast

• Streaming	benchmark
– Mimic	real	streaming	applications

– Continuously	broadcasts	data	from	a	
source	to	GPU-based	compute	nodes	

– Includes	a	computation	phase	that	involves	
host-to-device	and	device-to-host	copies

Experimental	Environments



SBAC-PAD	2016 18Network	Based	Computing	Laboratory

Overview	of	the	MVAPICH2	Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and

RDMA over Converged Enhanced Ethernet (RoCE)
– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs (MVAPICH2-GDR), Available since 2014
– Support for MIC (MVAPICH2-MIC), Available since 2014
– Support for Virtualization (MVAPICH2-Virt), Available since 2015
– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
– Used by more than 2,675 organizations in 83 countries
– More than 391,000 (> 0.39 million) downloads from the OSU site directly
– Empowering many TOP500 clusters (June ‘16 ranking)

• 12th ranked 462,462-core cluster (Stampede) at TACC
• 15th ranked 185,344-core cluster (Pleiades) at NASA
• 31th ranked 74520-core cluster (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu
• Empowering Top500 systems for over a decade

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 Tflop/s)⇒
– Stampede at TACC (12th in June 2016, 462,462 cores, 5.168 Pflop/s)



SBAC-PAD	2016 19Network	Based	Computing	Laboratory

0

2000

4000

6000

8000

10000

32K 64K 128K 256K 512K 1M 2M 4M

La
te
nc
y(
μs
)

Message	Size	(Bytes)

SL-MCAST GPU-MCAST Host-MCAST

0
10
20
30
40
50
60

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

La
te
nc
y	
(μ
s)

Message	Size	(Bytes)

SL-MCAST GPU-MCAST Host-MCAST

• Compared	proposed	SL-based	design	to	homogeneous	broadcast	
designs	with	explicitly	data	transfers

• Reduces	latency	up	to	56%	and	39%	for	small	and	large	messages
– No	extra	data	transfers	between	Host	and	GPU	memories

OMB	– Heterogeneous Inter-node	Broadcast	@	Wilkes

56% 39%



SBAC-PAD	2016 20Network	Based	Computing	Laboratory

• Inter-node	Broadcast	on	Wilkes
– IB	Hardware	Multicast	provides	good	scalability

OMB	– SL-based	Approach

0

5

10

15

20

25

2 4 8 16 32

La
te
nc
y	
(μ
s)

System	size	(Number	of	GPU	nodes)

SL-MCAST GPU-MCAST Host-MCAST



SBAC-PAD	2016 21Network	Based	Computing	Laboratory

0

10

20

30

40

50

60

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

La
te
nc
y	
(μ
s)

Message	Size	(Bytes)

IPC	SL-MCAST SHMEM	SL-MCAST

• SL-based	inter-node	+	Topology-aware	intra-node	on	CSCS
– Up	to	58%	and	79%	reduction	for	small	and	large	messages

• No	extra	data	transfers	between	Host	and	GPU	memories

OMB	– Inter- and	Intra-node	Broadcast	@	CSCS

58%

0

2000

4000

6000

8000

10000

12000

32K 64K 128K 256K 512K 1M 2M 4M

La
te
nc
y	
(μ
s)

Message	Size	(Bytes)

IPC	SL-MCAST SHMEM	SL-MCAST

79%



SBAC-PAD	2016 22Network	Based	Computing	Laboratory

0
2
4
6
8

10
12
14
16

32K 64K 128K 256K 512K 1M 2M 4M

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

Message	Size	(Bytes)

IPC	SL-MCAST SHMEM	SL-MCAST

0
0.5
1

1.5
2

2.5
3

3.5
4

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

Message	Size	(Bytes)

IPC	SL-MCAST SHMEM	SL-MCAST

• Utilizes	IPC-based	Device-To-Device	data	transfer	for	streaming	
applications	on	multi-GPU	systems	
– Up	to	26%	and	67%	improvement	for	small	and	large	messages

Streaming	Benchmark	– Execution	Time	@ CSCS

26%

67%



SBAC-PAD	2016 23Network	Based	Computing	Laboratory

0
0.5
1

1.5
2

2.5
3

3.5
4

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M 2M 4M

PC
Ie
	T
hr
ou

gh
pu

t	(
GB

/s
)

Message	Size	(Bytes)

IPC	SL-MCAST SHMEM	SL-MCAST

• Increases	availability	of	PCIe	Host-Device	Resources
– Utilize	IPC-based	Device-to-Device	data	transfers

– Free	up	PCIe	bandwidth	resources	between	Host	and	Devices	for	applications

Streaming	Benchmark	– Throughput	@	CSCS

3.2X



SBAC-PAD	2016 24Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation

• Conclusion	and	Future	Work

Outline



SBAC-PAD	2016 25Network	Based	Computing	Laboratory

• Combines	NVIDIA	GPUDirect	technology	and	InfiniBand	(IB)	
hardware	multicast for	GPU-enabled	streaming	applications	

• Further	proposes	an	intra-node	topology-aware	scheme	that	
exploits	CUDA	IPC	for	multi-GPU	systems
– Achieves	2X improvement	over	state-of-the-art	schemes	with	Ohio	State	

University	(OSU)	Micro-Benchmarks	(OMBs)

– Achieves	up	to	a	67%	improvement	in	execution	time	and	3.5X	of	
throughput in	a	synthetic	streaming	benchmark

– Indicates	applying	this	approach	to	a	streaming	application,	such	as	photon	
computed	tomography	(pCT)	or	deep	learning	framework,	is	promising

Conclusion



SBAC-PAD	2016 26Network	Based	Computing	Laboratory

• Include	in	future	releases	of	MVAPICH2-GDR	library

• Improve	reliability

• Evaluate	effectiveness	with	streaming	applications,	such	as,	
photon	computed	tomography	(pCT)	and	deep	learning	
frameworks

• Extend	the	designs	for	other	collective	operations	as	well	
as	non-blocking	operations
– Allreduce,	gather…etc.

Future	Work



SBAC-PAD	2016 27Network	Based	Computing	Laboratory

Thank	You!
Ching-Hsiang	Chu
chu.368@osu.edu

Network-Based	Computing	Laboratory
http://nowlab.cse.ohio-state.edu/

The	MVAPICH2	Project
http://mvapich.cse.ohio-state.edu/

This project is supported under the United States Department of Defense (DOD) High Performance Computing
Modernization Program (HPCMP) User Productivity Enhancement and Technology Transfer (PETTT) activity
(Contract No. GS04T09DBC0017 Engility Corporation). The opinions expressed herein are those of the authors and
do not necessarily reflect the views of the DOD or the employer of the author.



SBAC-PAD	2016 28Network	Based	Computing	Laboratory

• Mimics	behavior	of	a	streaming	application
– Continuously	broadcasts	data	from	a	source	to	GPU-based	compute	nodes	

– Includes	a	computation	phase	that	involves	host-to-device	and	device-to-host	
copies

Streaming	Benchmark

/* h_buf and d_buf: buffer on Host and GPU memory. */ 
for iter=0 to max_iter do

cudaMemcpyAsync(..., cudaMemcpyHostToDevice, cpy_stream); 
if rank == root then 

MPI Bcast(h_buf, ...); 
else

MPI Bcast(d_buf, ...); 
end if
dummy kernel<<<...>>>(d_buf,...); 
cudaMemcpyAsync(..., cudaMemcpyDeviceToHost, cpy_stream); 

end for 


