
CUDA	Kernel	based	Collective	Reduction	
Operations	on	Large-scale	GPU	Clusters	

Ching-Hsiang	Chu,	Khaled	Hamidouche,	Akshay Venkatesh,	Ammar	Ahmad	Awan	and	
Dhabaleswar K.	(DK)	Panda	

Speaker:	 Sourav Chakraborty

Network-based	 Computing	Laboratory

Department	of	Computer	Science	and	Engineering
The	Ohio	State	University

CCGrid 2016 2Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation

• Conclusion

Outline

CCGrid 2016 3Network	Based	Computing	Laboratory

Drivers	of	Modern	HPC	Cluster	Architectures

• Multi-core	processors	are	ubiquitous
• InfiniBand	very	popular	in	HPC	clusters
• Accelerators/Coprocessors	becoming	common	in	high-end	systems
• Pushing	the	envelope	for	Exascale computing

Accelerators	/	Coprocessors	
high	compute	density,	high	performance/watt

>1	Tflop/s	DP	on	a	chip	

High	Performance	Interconnects	- InfiniBand
<1us	latency,	>100	Gbps Bandwidth		

Tianhe	– 2 Titan Stampede Tianhe	– 1A

Multi-core	Processors

CCGrid 2016 4Network	Based	Computing	Laboratory

• Growth	of	Accelerator-enabled	clusters	in	the	last	3	years		
– 22%	of	Top	50	clusters	are	boosted	 by	NVIDIA	GPUs	in	Nov’15

– From	Top500	list		(http://www.top500.org)

Accelerators	in	HPC	Systems

8 15 23 28 33
5231 22 20 18 15
14

11 12
16 20 30

29

0

20

40

60

80

100

June-2013 Nov-2013 June-2014 Nov-2014 June-2015 Nov-2015

Sy
st
em

	C
ou
nt

NVIDIA	Kepler NVIDIA	Fermi Intel	Xeon	Phi

CCGrid 2016 5Network	Based	Computing	Laboratory

• Scientific parallel applications spend a considerable
amount of time in collectivecommunication operations
– E.g. Deep learning frameworks such as Caffe

Motivation	– Collectives	in	Applications

GPU	Node	1 GPU	Node	2

GPU	Node	N

MPI_Bcast/MPI_Scatter

MPI_Gather/MPI_Reduce

GPU computations

CCGrid 2016 6Network	Based	Computing	Laboratory

• Scientific parallel applications spend a considerable
amount of time in collectivecommunication operations
– Pure communication collectives: Broadcast, Gather, Scatter…

– Compute-oriented collectives: Reduce, Allreduce, Scan

– Communication part is highly optimized

• Compute-oriented collectives operations are not fully
optimized for GPU clusters
– CPU is doing all the works

– GPU resources are not fully utilized

Motivation	- Collective	Reduction	Operations

CCGrid 2016 7Network	Based	Computing	Laboratory

• Fast	computation	

– Massive	parallelism

• Efficient	communication

– NVIDIA	GPUDirect RDMA

Motivation	– Powerful	GPU	Resources

• GPU	features	are	not	being	utilized	for	all	collectives
• Can we leverage these features to further optimize the

compute-oriented collectives on GPU clusters?

http://www.nvidia.com/object/gpu-accelerated-computing.html https://developer.nvidia.com/gpudirect

CCGrid 2016 8Network	Based	Computing	Laboratory

• How to eliminate explicit data movements between Host
and GPU memories?
– cudaMemcpy call is expensive!

• How to handle the GPU-to-GPU communication after the
computations finish?

• When to use GPU for compute-oriented collective
operations?

– Launching kernels bring overhead; How to minimize?

Problem	Statement

CCGrid 2016 9Network	Based	Computing	Laboratory

• Design a framework that exploits the CUDA kernels to
efficiently handle compute-oriented collectives

• Propose extensions to the existing collective algorithms to
be GPU-Aware compute-orientedalgorithms
– MPI_Reduce, MPI_Allreduce andMPI_Scan

• Detailed analysis and evaluation using different GPU
systems includinga Cray CS-Storm system.

Overview

CCGrid 2016 10Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation

• Conclusion

Outline

CCGrid 2016 11Network	Based	Computing	Laboratory

• Existing	designs
1. Explicit	copy	the	data	from	GPU	to	host	memory	

2. Host-to-Host	 communication	to	remote	processes

3. Perform	computation	 on	CPU

4. Explicit	copy	the	data	from	host	to	GPU	memory

• Proposed	designs
1. GPU-to-GPU	 communication

• NVIDIA	GPUDirect RDMA	(GDR)

• Pipeline	 through	host	for	large	msg

2. Perform	computation	 on	GPU
• Efficient	CUDA	kernels

Design	Consideration

CPU

Host Memory

GPU

PCIe IB
Adapter

CPU

Host Memory

GPU

PCIeIB
Adapter1

2

3

4

1

2

Node BNode A

CCGrid 2016 12Network	Based	Computing	Laboratory

• Tree-based	K-nomial	algorithm
– Only	the	non-leaf nodes	perform	reduction	operation

• Pros	&	Cons
– Load	balance,	Efficient/scalable	communication

– Higher	average	latency

K-nomial MPI_Reduce

0 1 2 3 4 5 6 7
[1]

[2]

[3]

0

124

356

7

CCGrid 2016 13Network	Based	Computing	Laboratory

• Host-based	Binomial-Reduce	(Default)	

• GPU-based	Binomial-Reduce	(BR-DD)	

Cost	Analysis

Expensive cudaMemcpy, before/after reduction op.

Relatively slow computation on CPUFast Host-Host Comm.

Fast, highly parallelized computation on GPU

Overhead of launching CUDA kernels (~10us)GDR-based GPU-GPU Comm.

Constant variant of tree initialization

log$𝑛 × 𝜖×𝐶𝑜𝑚𝑚+,-.(𝑀) + 𝐶𝑜𝑚𝑝+,-.(𝑀) + 2×𝐶𝑜𝑝𝑦(𝑀)

log$ 𝑛 × 𝜖×𝐶𝑜𝑚𝑚678 𝑀 + 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑6@A 𝑀 + 𝐶𝑜𝑚𝑝6@A(𝑀)

Message Size

CCGrid 2016 14Network	Based	Computing	Laboratory

• Gather-first	algorithm
– Root	gathers	all	the	data	and	perform	the	computation

• Since	only	root	needs	 the	final	result

• Pros	&	Cons
– Low	computation	overhead

– Poor	scalability

Gather-first	MPI_Reduce

0 1 2 3 4 5 6 7

CCGrid 2016 15Network	Based	Computing	Laboratory

• Host-based	Gather	and	Reduce	(GR-H-HH)	

• Host-based	Gather,	GPU-based	Reduce	(GR-HH)	

• GPU-based	Gather	and	Reduce	(GR-DD)	

Cost	Analysis

(𝑛 − 1)× 𝐶𝑜𝑚𝑚+,-.(𝑀) + 𝐶𝑜𝑚𝑝+,-.(𝑀) + 2×𝐶𝑜𝑝𝑦(𝑀)

(𝑛 − 1)×𝐶𝑜𝑚𝑚678(𝑀) + 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑6@A 𝑀 + 𝐶𝑜𝑚𝑝6@A(𝑀)

(𝑛 − 1)×(𝐶𝑜𝑚𝑚+,-. 𝑀 + 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑6@A 𝑀 + 𝐶𝑜𝑚𝑝6@A 𝑀 + 2×𝐶𝑜𝑝𝑦(𝑀))
Could suffer scalable issue è Good for small messages or small scale

Less affect from CUDA kernel launching overhead è Good for small messages

CCGrid 2016 16Network	Based	Computing	Laboratory

• Recursive	doubling	algorithm
– Every	processor	needs	to	perform	computation

• Pros	&	Cons
– Load	balance,	Efficient/scalable	communication

– Higher	average	latency

GPU-based	MPI_Allreduce and	MPI_Scan

0 1 2 3 4 5 6 7
[1]

[2]

[3]

CCGrid 2016 17Network	Based	Computing	Laboratory

• GPU-based	Recursive	Doubling	(RD-DD)	

• GPU-based	Binomial-Reduce-Broadcast	(GBRB-DD)	

Cost	Analysis

Same as BD-DD MPI_Reduce

log$ 𝑛 × 𝜖×𝐶𝑜𝑚𝑚678 𝑀 +𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑6@A 𝑀 + 𝐶𝑜𝑚𝑝6@A(𝑀)

log$𝑛 × 2×𝜖×𝐶𝑜𝑚𝑚678 𝑀 +𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑6@A 𝑀 + 𝐶𝑜𝑚𝑝6@A(𝑀)

CCGrid 2016 18Network	Based	Computing	Laboratory

Communication Computation Design Algorithm Benefit

Host<->Host
CPU

BR-H-HH	(Default) Binomial-Reduce Large	scale,	
small	messagesRD-H-HH	(Default) Recursive	doubling

GR-H-HH

Gather-Reduce Small	scale,	
small messages

GPU

GR-HH
Host<->Device (GDR) GR-HD	/	GR-DH

Device<->Device
(GDR)

GR-DD

BR-DD Binomial-Reduce

Largemessages
for	any	scale

BRB-DD Binomial-Reduce-Bcast

RD-DD
Recursive	doubling

Host<->Device (GDR) RD-HD/RD-DH

Alternative	and	Extended	Designs

CCGrid 2016 19Network	Based	Computing	Laboratory

• Introduction

• Proposed	Designs

• Performance	Evaluation

• Conclusion

Outline

CCGrid 2016 20Network	Based	Computing	Laboratory

Overview	of	the	MVAPICH2	Project
• High	Performance	open-source	MPI	Library	for	InfiniBand,	10-40Gig/iWARP,	and	RDMA	over	Converged	Enhanced	Ethernet	(RoCE)

– MVAPICH	(MPI-1),	MVAPICH2	(MPI-2.2	and	MPI-3.0),	Available	since	2002

– MVAPICH2-X	(MPI	+	PGAS),	Available	since	2011

– Support	for	GPGPUs		(MVAPICH2-GDR)	 and	MIC	(MVAPICH2-MIC),	Available	since	2014

– Support	for	Virtualization	(MVAPICH2-Virt),	Available	since	2015

– Support	for	Energy-Awareness	 (MVAPICH2-EA),	 Available	since	2015

– Used	by	more	than	2,550	organizations in	79	countries

– More	than	360,000	(>	0.36	million)	downloads	from	the	OSU	site	directly

– Empowering	many	TOP500	clusters	(Nov	‘15	ranking)
• 10th ranked	519,640-core	cluster	(Stampede)	at		TACC

• 13th ranked	185,344-core	cluster	(Pleiades)	at	NASA

• 25th ranked	76,032-core	cluster	(Tsubame	2.5)	at	Tokyo	Institute	of	Technology	and	many	others

– Available	with	software	stacks	of	many	vendors	and	Linux	Distros	(RedHat	and	SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering	Top500	systems	 for	over	a	decade
– System-X	from	Virginia	Tech	(3rd in	Nov	2003,	2,200	processors,	12.25	TFlops)	->

– Stampede	at	TACC	(10th in	Nov’15,	519,640	cores,	5.168	Plops)

CCGrid 2016 21Network	Based	Computing	Laboratory

1. Wilkes	cluster	@	University	of	Cambridge
– 2	NVIDIA	K20c	GPUs	per	node

– Used	for	inter-node	experiments
• Up	to	32	GPU	nodes

2. CSCS	cluster	@	Swiss	National	Supercomputing	 Centre	
– Cray	CS-Storm	system

– 8	NVIDIA	K80	GPUs	per	node	(=	16	NVIDIA	K40	GPUs	per	node)

– Used	for	intra-node	experiments
• Up	to	96	GPUs	over	11	nodes

Experimental	Environments

CCGrid 2016 22Network	Based	Computing	Laboratory

La
te
nc
y	(
us
)

Message	Size	(Bytes)

Default BD-DD
GR-DD GR-HD
GR-HH GR-H-HH

0

20

40

60

80

100

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K

La
te
nc
y	(
us
)

Message	Size	(Bytes)

Default BD-DD
GR-DD GR-HD
GR-HH GR-H-HH

Evaluation	- MPI_Reduce @	Wilkes	(32	GPUs)

Gather-first approaches	win	for	
small	messages

K-nomial	GPU-based	approach	wins	
for	large	messages

CCGrid 2016 23Network	Based	Computing	Laboratory

16K 64K 256K 1M 4M

La
te
nc
y	(
us
)

Message	Size	(Bytes)

Default BD-DD
GR-DD GR-HD
GR-HH GR-H-HH

0

50

100

150

200

250

4 16 64 256 1K 4K

La
te
nc
y	(
us
)

Message	Size	(Bytes)

Default BD-DD
GR-DD GR-HD
GR-HH GR-H-HH

Evaluation	- MPI_Reduce @ CSCS	(96	GPUs)

Gather-first approaches	
win	for	small	messages

K-nomial	GPU-based	approach	win	
for	large	messages

CCGrid 2016 24Network	Based	Computing	Laboratory

0

5

10

15

20

25

La
te
nc
y	(
m
s)

Message	Size	(Bytes)

Default
RD-DD
BRB-DD

0

2

4

6

8

10

2 4 8 16 32
La
te
nc
y	(
m
s)

System	Size	(Number	of	Nodes)

Default
RD-DD
BRB-DD

Evaluation	- MPI_Allreduce

96	GPUs	@	CSCS

Good	Scalability
32	GPUs	@	Wilkes

CCGrid 2016 25Network	Based	Computing	Laboratory

0

5

10

15

20

2 4 8 16 32
La
te
nc
y	(
m
s)

System	Size	(Number	of	nodes)

Default
RD-DD
RD-HD

0
10
20
30
40
50
60

64K 128K 256K 512K 1M 2M 4M

La
te
nc
y	(
m
s)

Message	Size	(Bytes)

Default
RD-DD
RD-HD

Evaluation	- MPI_Scan

96	GPUs	@	CSCS
Good	Scalability	
32	GPUs	@	Wilkes

2MB	Message

CCGrid 2016 26Network	Based	Computing	Laboratory

Prediction
• Use the proposed analytical models to predict the

performance for large scale GPU clusters

0

10000

20000

30000

4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te
cn
y	(
us
)

Message	Size	(Bytes)

Prediction	for	1024	GPUs
Default
RD-DD/BR-DD

0

2000

4000

6000

4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te
nc
y	(
us
)

Message	Size	(Bytes)

32	GPUs	on	Wilkes	cluster
Model-based	Estimation
Experiment	result

CCGrid 2016 27Network	Based	Computing	Laboratory

• CUDA	kernel	based	designs	significantly	improve	the	
performance	of		compute-oriented	collective	operations
– MPI_Reduce,	MPI_Allreduce and	MPI_Scan

– CUDA	kernels	based	reduction	operations	èFast	computation

– GPUDirect feature	èEfficient	GPU-to-GPU	communication

• Future	work
– Performing	application-level	evaluation	

• Deep	learning	 frameworks	such	as	Caffe

– Will	be	included	in	the	future	release	of	MVAPICH2-GDR	library

Conclusion

CCGrid 2016 28Network	Based	Computing	Laboratory

Thank	You!

Network-Based	Computing	 Laboratory
http://nowlab.cse.ohio-state.edu/

The	MVAPICH2	Project
http://mvapich.cse.ohio-state.edu/

CCGrid 2016 29Network	Based	Computing	Laboratory

• CUDA	Kernels
– Example:	Vector	addition	for	MPI_SUM	operation

Reduction	Operations	on	GPU

template<class T>
__global__ void vector_addition(T *dst, T *src, size_t count){

int i = blockIdx.x * blockDim.x + threadIdx.x;
for (; i < count; i += blockDim.x * gridDim.x)

dst[i] += src[i];
}

More	information	about	optimizing	your	CUDA	kernels:	
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

