

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters

Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan and Dhabaleswar K. (DK) Panda

Speaker: Sourav Chakraborty

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

Outline

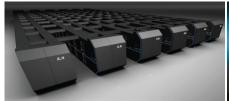
- Introduction
- Proposed Designs
- Performance Evaluation
- Conclusion

Drivers of Modern HPC Cluster Architectures

High Performance Interconnects - InfiniBand <1us latency, >100 Gbps Bandwidth

Accelerators / Coprocessors
high compute density, high performance/watt
>1 Tflop/s DP on a chip

- Multi-core processors are ubiquitous
- InfiniBand very popular in HPC clusters
- Accelerators/Coprocessors becoming common in high-end systems
- Pushing the envelope for Exascale computing



Tianhe – 2

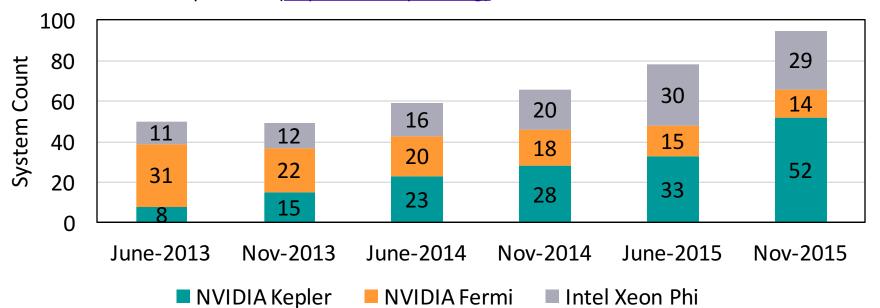
Titan

Stampede

Tianhe – 1A

Accelerators in HPC Systems

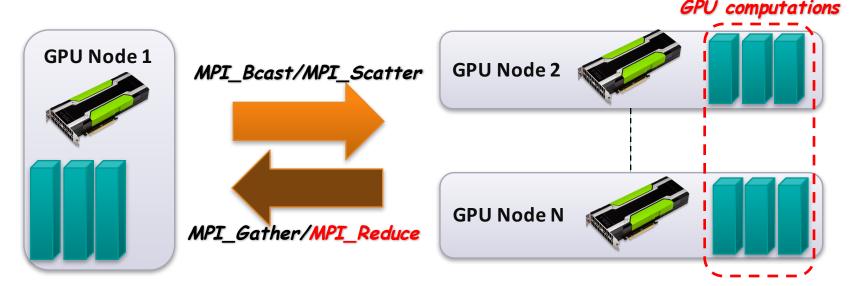
- Growth of Accelerator-enabled clusters in the last 3 years
 - 22% of Top 50 clusters are boosted by NVIDIA GPUs in Nov'15
 - From Top500 list (http://www.top500.org)



Motivation – Collectives in Applications

• Scientific parallel applications spend a considerable amount of time in collective communication operations

E.g. Deep learning frameworks such as Caffe

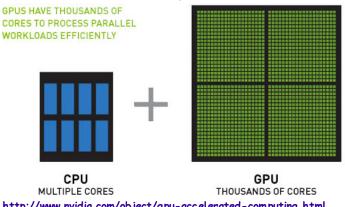


Motivation - Collective Reduction Operations

- Scientific parallel applications spend a considerable amount of time in collective communication operations
 - Pure communication collectives: Broadcast, Gather, Scatter...
 - Compute-oriented collectives: Reduce, Allreduce, Scan
 - Communication part is highly optimized
- Compute-oriented collectives operations are not fully optimized for GPU clusters
 - CPU is doing all the works
 - GPU resources are not fully utilized

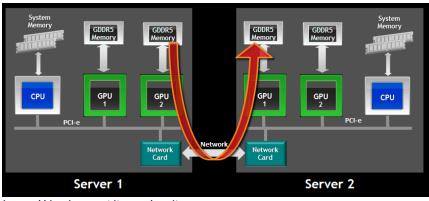
Motivation – Powerful GPU Resources

- Fast computation
 - Massive parallelism



http://www.nvidia.com/object/gpu-accelerated-computing.html

- Efficient communication
 - **NVIDIA GPUDirect RDMA**



https://developer.nvidia.com/gpudirect

- **GPU** features are not being utilized for all collectives
- Can we leverage these features to further optimize the compute-oriented collectives on GPU clusters?

Problem Statement

- How to eliminate explicit data movements between Host and GPU memories?
 - cudaMemcpy call is expensive!
- How to handle the GPU-to-GPU communication after the computations finish?
- When to use GPU for compute-oriented collective operations?
 - Launching kernels bring overhead; How to minimize?

Overview

- Design a framework that exploits the CUDA kernels to efficiently handle compute-oriented collectives
- Propose extensions to the existing collective algorithms to be GPU-Aware compute-oriented algorithms
 - MPI_Reduce, MPI_Allreduce and MPI_Scan
- Detailed analysis and evaluation using different GPU systems including a Cray CS-Storm system.

Outline

- Introduction
- Proposed Designs
- Performance Evaluation
- Conclusion

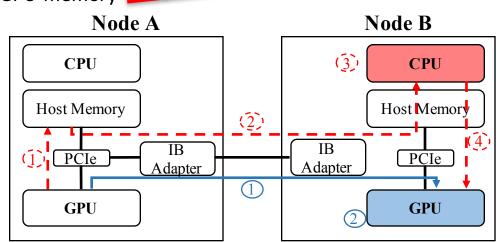
Design Consideration

Existing designs

- **Expensive!** Explicit copy the data from GPU to host memory
- Relative slow for large data **Fast** Host-to-Host communication to remote processes
- Perform computation on CPU
- Good for small data **Expensive!** Explicit copy the data from host to GPU memory

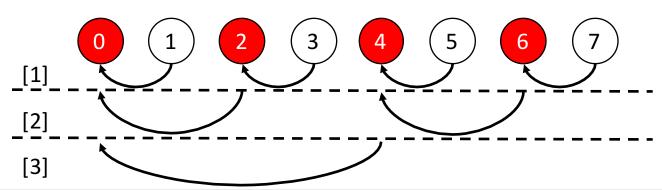
Proposed designs

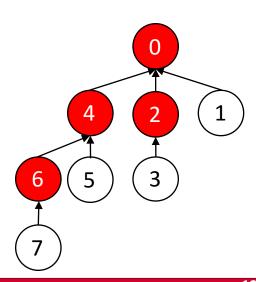
- GPU-to-GPU communication
 - NVIDIA GPUDirect RDMA (GDR)
 - Pipeline through host for large msg
- Perform computation on GPU
 - Efficient CUDA kernels



K-nomial MPI_Reduce

- Tree-based K-nomial algorithm
 - Only the non-leaf nodes perform reduction operation
- Pros & Cons
 - Load balance, Efficient/scalable communication
 - Higher average latency





Cost Analysis

Host-based Binomial-Reduce (Default)

Expensive cudaMemcpy, before/after reduction op. Constant variant of tree initialization

$$[\log_2 n] \times (\epsilon \times Comm_{Host}(M) + Comp_{Host}(M)) + 2 \times Copy(M)$$

Fast Host-Host Comm.

Relatively slow computation on CPU

Message Size

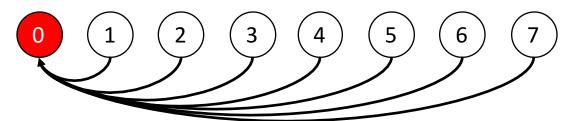
GPU-based Binomial-Reduce (BR-DD)

[] Higher cost of communication and kernel overhead, but fast GPU computation compensates it

→ Good for large messages erneua of launching CUDA kernels (~10us)

Gather-first MPI_Reduce

- Gather-first algorithm
 - Root gathers all the data and perform the computation
 - Since only root needs the final result
- Pros & Cons
 - Low computation overhead
 - Poor scalability



Cost Analysis

Host-based Gather and Reduce (GR-H-HH)

$$(n-1)\times(Comm_{Host}(M)+Comp_{Host}(M))+2\times Copy(M)$$

Host-based Gather, GPU-based Reduce (GR-HH)

$$\underline{(n-1)} \times (Comm_{Host}(M) + Overhead_{GPU}(M) + Comp_{GPU}(M) + 2 \times Copy(M))$$

- Could suffer scalable issue -> Good for small messages or small scale

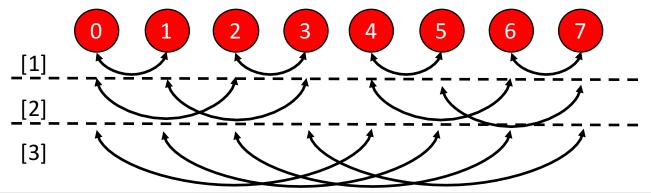
GPU-based Gather and Reduce (GR-DD)

$$(n-1)\times Comm_{GDR}(M) + Overhead_{GPU}(M) + Comp_{GPU}(M)$$

Less affect from CUDA kernel launching overhead -> Good for small messages

GPU-based MPI_Allreduce and MPI_Scan

- Recursive doubling algorithm
 - Every processor needs to perform computation
- Pros & Cons
 - Load balance, Efficient/scalable communication
 - Higher average latency



Cost Analysis

GPU-based Recursive Doubling (RD-DD)

$$[\log_2 n] \times (\epsilon \times Comm_{GDR}(M) + Overhead_{GPU}(M) + Comp_{GPU}(M))$$

Same as BD-DD MPI_Reduce

- GPU-based Binomial-Reduce-Broadcast (GBRB-DD)
- Higher cost of communication and kernel overhead, but fast GPU computation compensates it
 - → Good for large messages

Alternative and Extended Designs

Communication	Computation	Design	Algorithm	Benefit
Host<->Host	CPU	BR-H-HH (Default)	Binomial-Reduce	Large scale, small messages
		RD-H-HH (Default)	Recursive doubling	
		GR-H-HH	- Gather-Reduce	Small scale, small messages
	GPU	GR-HH		
Host<->Device (GDR)		GR-HD / GR-DH		
Device<->Device (GDR)		GR-DD		
		BR-DD	Binomial-Reduce	Large messages for any scale
		BRB-DD	Binomial-Reduce-Bcast	
		RD-DD	Recursive doubling	
Host<->Device (GDR)		RD-HD/RD-DH		

Outline

- Introduction
- Proposed Designs
- Performance Evaluation
- Conclusion

Overview of the MVAPICH2 Project

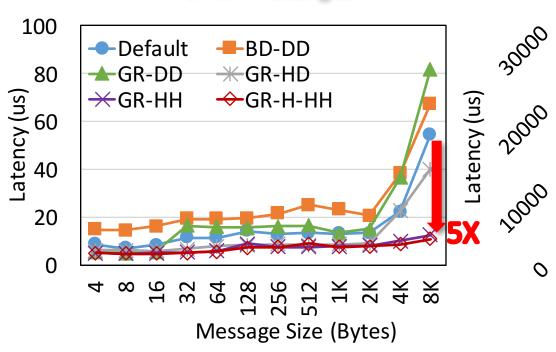
- High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Used by more than 2,550 organizations in 79 countries
 - More than 360,000 (> 0.36 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov '15 ranking)
 - 10th ranked 519,640-core cluster (Stampede) at TACC
 - 13th ranked 185,344-core cluster (Pleiades) at NASA
 - 25th ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu
- Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Stampede at TACC (10th in Nov'15, 519,640 cores, 5.168 Plops)

Experimental Environments

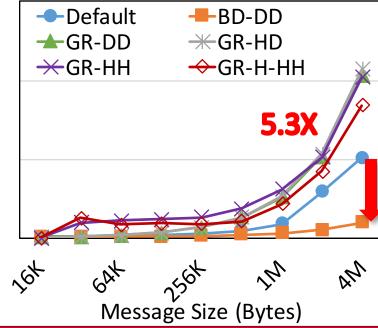
- 1. Wilkes cluster @ University of Cambridge
 - 2 NVIDIA K20c GPUs per node
 - Used for inter-node experiments
 - Up to 32 GPU nodes
- 2. CSCS cluster @ Swiss National Supercomputing Centre
 - Cray CS-Storm system
 - 8 NVIDIA K80 GPUs per node (= 16 NVIDIA K40 GPUs per node)
 - Used for intra-node experiments
 - Up to 96 GPUs over 11 nodes

Evaluation - MPI_Reduce @ Wilkes (32 GPUs)

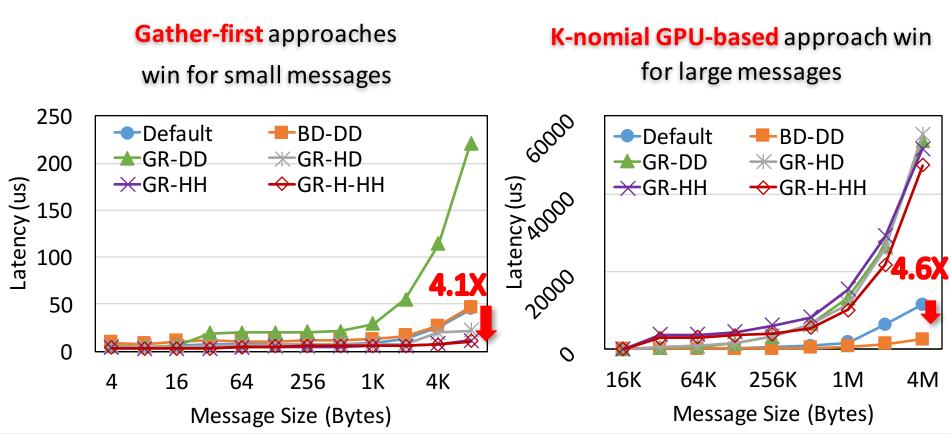
Gather-first approaches win for small messages



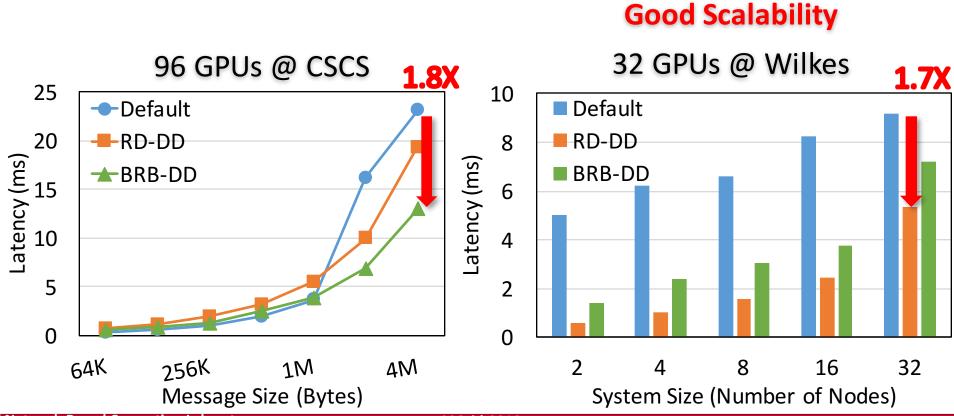
K-nomial GPU-based approach wins for large messages



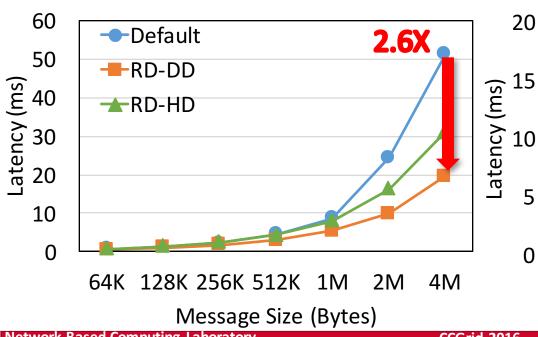
Evaluation - MPI_Reduce @ cscs (96 GPUs)



Evaluation - MPI_Allreduce

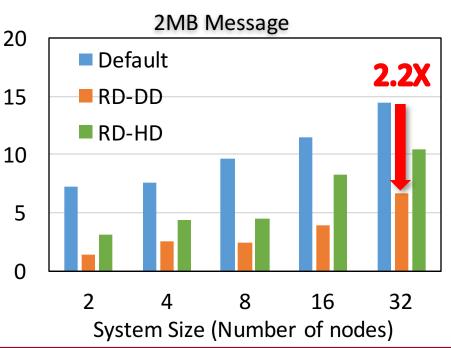


Evaluation - MPI Scan



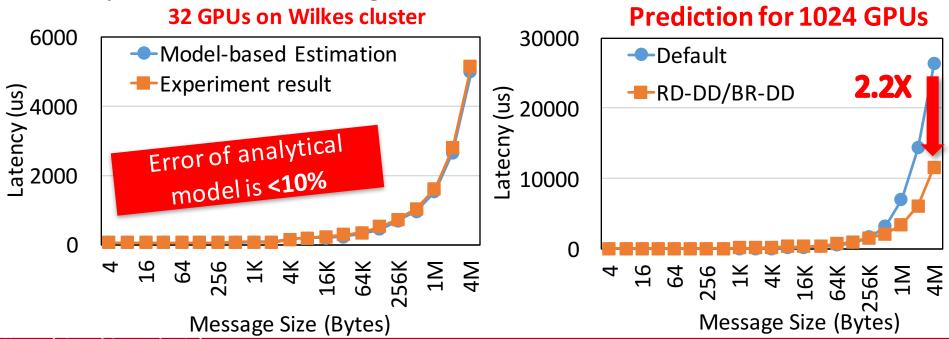
Good Scalability

32 GPUs @ Wilkes



Prediction

 Use the proposed analytical models to predict the performance for large scale GPU clusters



Conclusion

- CUDA kernel based designs significantly improve the performance of compute-oriented collective operations
 - MPI_Reduce, MPI_Allreduce and MPI_Scan
 - CUDA kernels based reduction operations → Fast computation
 - GPUDirect feature → Efficient GPU-to-GPU communication
- Future work
 - Performing application-level evaluation
 - Deep learning frameworks such as Caffe
 - Will be included in the future release of MVAPICH2-GDR library

Thank You!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project http://mvapich.cse.ohio-state.edu/

Reduction Operations on GPU

- CUDA Kernels
 - Example: Vector addition for MPI_SUM operation

```
template<class T>
__global__ void vector_addition(T *dst, T *src, size_t count){
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   for (; i < count; i += blockDim.x * gridDim.x)
        dst[i] += src[i];
}</pre>
```

More information about optimizing your CUDA kernels:

http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf http://http.developer.nvidia.com/GPUGems3/gpugems3 ch39.html