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Drivers of Modern HPC Cluster Architectures
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Accelerators / Coprocessors
high compute density, high performance/watt
>1 Tflop/s DP on a chip

High Performance Interconnects - InfiniBand

Multi-core Processors <1us latency, >100 Gbps Bandwidth

e Multi-core processors are ubiquitous

e [nfiniBandverypopularin HPC clusters

e Accelerators/Coprocessors becomingcommon in high-end systems
e Pushingthe envelopefor Exascale computlng
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Accelerators in HPC Systems

e Growth of Accelerator-enabled clusters in the last 3 years

— 22% of Top 50 clusters are boosted by NVIDIA GPUs in Nov'15
—  From Top500 list (http://www.top500.org)
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Motivation — Collectives in Applications

e Scientific parallel applications spend a considerable
amount of time in collective communication operations

— E.g. Deep learning frameworks such as Caffe
GPU compufaflons

,————

GPU Node 1

MPI_Bcast/MPI_Scatter GPU Node?2

GPU Node N

|
I
I
o
I
I
1
I
I
MPI_Gather/MPI_Reduce :

‘———I

- e = e

Network Based Computing Laboratory CCGrid 2016




Motivation - Collective Reduction Operations

e Scientific parallel applications spend a considerable
amount of time in collective communication operations
— Pure communication collectives: Broadcast, Gather, Scatter...
— Compute-oriented collectives: Reduce, Allreduce, Scan
— Communication part is highly optimized
e Compute-oriented collectives operations are not fully
optimized for GPU clusters

— CPU is doing all the works

— GPU resources are not fully utilized
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Motivation — Powerful GPU Resources

e Fast computation e Efficient communication

- Masswe paraIIellsm — NVIDIA GPUDirect RDMA
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http://www.nvidia.com/ob ject/qpu-accelerated -computing .html https://developer.nvidia.com/gpudirect

 GPU features are not being utilized for all collectives
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e Can we leverage these features to further optimize the
compute-oriented collectives on GPU clusters?

Network Based Computing Laboratory CCGrid 2016




Problem Statement

e How to eliminate explicit data movements between Host
and GPU memories?

— cudaMemcpy call is expensive!

e How to handle the GPU-to-GPU communication after the
computationsfinish?

e When to use GPU for compute-oriented collective
operations?

— Launching kernels bring overhead; How to minimize?
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Overview

e Design a framework that exploits the CUDA kernels to
efficiently handle compute-oriented collectives

e Propose extensions to the existing collective algorithms to
be GPU-Aware compute-oriented algorithms
— MPI_Reduce, MPI_Allreduce and MPIl_Scan

e Detailed analysis and evaluation using different GPU
systems includinga Cray CS-Storm system.
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Design Consideration

e Existing designs

1. Explicit copy the data from GPU to host memoryw
7 e .
3.
4. Explicit copy the data from host to GPU memory
. Node A Node B
e Proposed designs .
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K-nomial MPI_Reduce

e Tree-based K-nomial algorithm
— Only the non-leaf nodes performreduction operation
e Pros & Cons

— Load balance, Efficient/scalable communication

— Higher average latency
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Network Based Computing Laboratory

CCGrid 2016 12




Cost Analysis

e Host-based Binomial-Reduce (Default)
Constant variant of tree initialization Expensive cudaMemcpy, before/after reduction op.

[log, n|X(exCommyyse (M) + Compyose(M)) + 2XCopy (M)

Fast Host-Host Comm. Relatively slow computation on CPU Message Size

e GPU-based Binomial-Reduce
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Gather-first MPl_Reduce

e Gather-first algorithm
— Root gathers all the data and perform the computation
e Since only root needs the final result
e Pros & Cons
— Low computationoverhead

— Poor scalability

CCGrid 2016 14
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Cost Analysis

e Host-based Gather and Reduce (GR-H-HH)
(n o 1)X(C0mmHost(M) + CompHost(M)) + ZXCOP:V(M)

e Host-based Gather, GPU-based Reduce (GR-HH)
(n — 1) X(Commy,s:(M) + Overhead;py (M) + Compgspy (M) + 2XCopy(M))

Could suffer scalable issue @ Good for small messages or small scale

e GPU-based Gather and Reduce (GR-DD)
(n — 1)XCommgpr(M) + Overhead;py (M) + Compgpy (M)

Less affect from CUDA kernel launching overhead = Good for small messages
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GPU-based MPI_Allreduce and MPI_Scan

e Recursive doublingalgorithm
— Every processor needs to perform computation
e Pros & Cons

— Load balance, Efficient/scalable communication

— Higher average latency

3] \:: 5:1/
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Cost Analysis

e GPU-based Recursive Doubling (RD-DD)

llog, n|x(exCommgpr (M) + Overheadgpy (M) + Compgpy (M))

Same as BD-DD MPI_Reduce
e GPU-based Binomial-Reduce-Broadcast (GBRB-DD)

nication and kernel overhead,

tion compensates it

Higher cost of commu

uta
but fast GPU comp
> Good for large messages
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Alternative and Extended Designs

Communication

Computation

Design

Algorithm

Benefit

Host<->Host

BR-H-HH (Default)

Binomial-Reduce

Large scale,
small messages

Host<->Device (GDR)

Device<->Device
(GDR)

Host<->Device (GDR)

CPU RD-H-HH (Default) Recursive doubling
GR-H-HH
GR-HH
Gather-Reduce small scale,
GR-HD / GR-DH small messages
GR-DD
GPU BR-DD Binomial-Reduce
BRB-DD Binomial-Reduce-Bcast | | _ rge messages
RD-DD for any scale
Recursive doubling
RD-HD/RD-DH
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Overview of the MVAPICH2 Project

. High Performance open-source MPI Library for InfiniBand, 10-40Gig/iWARP, and RDMA over Converged Enhanced Ethernet (RoCE)
- MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
- MVAPICH2-X (MPI + PGAS), Availablesince 2011

— Supportfor GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Availablesince 2014

—  Support for Virtualization (MVAPICH2-Virt), Available since 2015
—  Support for Energy-Awareness (MVAPICH2-EA), Availablesince 2015
—  Used by more than 2,550 organizationsin 79 countries

—  More than 360,000 (>0.36 million) downloads from the OSU site directly

—  Empowering many TOP500 clusters (Nov ‘15 ranking)

e 10t ranked 519,640-core cluster (Stampede) at TACC

e 13t ranked 185,344-core cluster (Pleiades) at NASA

e 25%ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and manyothers
— Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

—  http://mvapich.cse.ohio-state.edu

e  Empowering Top500 systems for over a decade
—  System-X from Virginia Tech (3" in Nov 2003, 2,200 processors, 12.25 TFlops) ->

—  Stampede at TACC (10t in Nov’15, 519,640 cores, 5.168 Plops)
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Experimental Environments

1. Wilkes cluster @ University of Cambridge
— 2 NVIDIA K20c GPUs per node

— Used for inter-node experiments
e Up to 32 GPU nodes

2. CSCS cluster @ Swiss National Supercomputing Centre

— Cray CS-Storm system
— 8 NVIDIA K80 GPUs per node ( =16 NVIDIA K40 GPUs per node)

— Used for intra-node experiments

e Up to96 GPUs over 11 nodes
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Evaluation - MPI_Reduce @ Wilkes (32 GPUs)

Gather-first approaches win for K-nomial GPU-based approach wins
small messages for large messages
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Evaluation - MPI_Reduce @ €SCS (96 GPUs)

Gather-firstapproaches K-nomial GPU-based approach win
win for small messages for large messages
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Evaluation - MPI_Allreduce

Good Scalability

96 GPUs @ CSCS 1.8X 32 GPUs @ Wilkes 1.7X
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Evaluation - MPIl_Scan

Good Scalability
96 GPUs @ CSCS 32 GPUs @ Wilkes
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Prediction

e Use the proposed analytical
performance for large scale GPU clusters
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Conclusion

e CUDA kernel based designs significantly improve the
performance of compute-oriented collective operations
— MPI_Reduce, MPI_Allreduce and MPI_Scan
— CUDA kernels based reduction operations = Fast computation

— GPUDirect feature =»Efficient GPU-to-GPU communication

e Future work

— Performing application-level evaluation
e Deep learning frameworks such as Caffe

— Willbeincludedinthe future release of MVAPICH2-GDR library
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Network-Based Computing Laboratory
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The MVAPICH2 Project
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Reduction Operations on GPU

e CUDA Kernels
— Example: Vector addition for MPI_SUM operation

template<class T>
__global__ void vector_addition(T *dst, T *src, size_t count){
int 1 = blockIdx.x * blockDim.x + threadIdx.x;
for (; 1 < count; 1 += blockDim.x * gridDim.x)
dst[1] += src[i];

More information about optimizing your CUDA kernels:
http://developer.download.nvidia.com/books/cuda-by-example/cuda-by-example-sample.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3 ch39.html
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